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1. Introduction

ABSTRACT

Actuarial senescence is characterized by an increase in mortality rate with increasing chronological age.
The reliability theory of senescence proposes that organisms’ vital functions can be modelled as a suite
of damageable, irreplaceable elements (typically genes or their products) that protect their bearer from
condition-dependent death so long as at least one of the elements remains intact. Current incarnations
of the reliability theory of senescence are continuous-time models with no explicit evolutionary com-
ponent. Here, we use elementary probability theory and evolutionary dynamics analysis to derive a
discrete-time version of the reliability theory of senescence. We include three variations on this theme:
the ‘Series’ model in which damage to any of n elements results in death, the ‘Parallel’ model, in which
damage accumulates in random order and damage to all n elements results in death, and the ‘Cascade’
(multi-stage) model, which is like the Parallel model, except the irreparable damage necessarily follows
a strict sequence. For simplicity, we refer to the state of having multiple elements as ‘redundancy’, but
this does not imply that the elements are necessarily identical. We show that redundancy leads to actu-
arial senescence in the Parallel and Cascade models but not in the Series model. We further demonstrate
that in the Parallel and Cascade models, lifetime reproductive output (a potential proxy for fitness in
populations with discrete generations) is a positive but decelerating function of redundancy. The posi-
tive nature of the fitness function leads to the prediction that redundancy and senescence should evolve
from non-redundant, non-senescing ancestral populations; however, the deceleration of the fitness func-
tion leads to the prediction that this evolution towards increased redundancy will eventually be limited
by mutation-selection balance. Using evolutionary dynamics analysis involving the discrete-generation
quasispecies equation, we confirm these two predictions. Finally, we show that a population’s equilib-
rium redundancy is sensitive to the environmental conditions that prevailed during its evolution, such
as the rate of extrinsic mortality.

© 2009 Elsevier Ireland Ltd. All rights reserved.

more vigorous individuals. However, such arguments are circular
because, if ageing is one of the reasons why individuals must be

Actuarial senescence is characterized by an increase in mortal-
ity rate with increasing chronological age, reflecting general bodily
deterioration (Kirkwood and Austad, 2000). Since “ageing is a dele-
terious trait” (Bonsall, 2006, p. 131), and extremely widespread in
the tree of life, the questions of how senescence evolved, and why
it has not been purged from populations, are of perennial interest
to evolutionary biologists.

Early evolutionary theories of senescence (Wallace, ca. 1865;
Weismann, 1889) were group-selectionist in nature, proposing that
individuals senesce and eventually die in order to make space and
resources available for future generations composed of younger,
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replaced, they presuppose that individuals must deteriorate over
time. Moreover, they fail to explain how a population of altru-
istically senescing individuals would not be subject to invasion
by more slowly senescing or even non-senescing invaders. Recent
studies have placed group-selectionist arguments on a stronger
theoretical foundation by emphasizing instances where senescence
appears to be “selected for its own sake” (Mitteldorf, 2004; Longo et
al., 2005) as aresult of kin- or group-level benefits including payoffs
to close relatives, and reduced local extinction risk due to commu-
nicable diseases or chaotic population dynamics (Mitteldorf, 2006,
2009).

Nevertheless, individual-based theories of the evolution of
senescence have come to the fore. Chief among these are the
‘mutation accumulation’ theory (‘MA’; Medawar, 1946, 1952), and
the ‘antagonistic pleiotropy’ theory (‘AP’; Williams, 1957). These
related theories argue that senescence occurs due to the deleterious
late-life action of specific genes that remain unpurged in organ-
isms’ genomes because the force of selection is very weak in old
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age-classes (MA), or because they have beneficial effects earlier in
life (AP; also see Charlesworth, 1994; Hamilton, 1966).

Despite the cogency of these arguments, and clear evidence for
tradeoffs (e.g., Charmantier et al., 2006), the current evidence for
specific genes with late-acting deleterious effects is mixed at best
(Flatt and Promislow, 2007; Kirkwood, 2005; Leroi et al., 2005;
Shostak, 2006). Additionally, these theories do not account for
already well-established proximate mechanisms of senescence, in
particular those that are linked to the buildup of somatic damage.
Damaging agentsinclude intrinsically generated metabolic byprod-
ucts, such as reactive oxygen species, and extrinsic factors, such as
ultraviolet radiation, among other agents (Arking, 1998).

A third important evolutionary theory, the ‘disposable soma’
theory (‘DS’; Kirkwood, 1977; Kirkwood and Holliday, 1979), argues
that senescence arises as a consequence of organisms optimizing
resource allocation when there is a tradeoff between somatic main-
tenance and reproduction. Encouragingly, unlike MA and AP, DS
sees damage rather than actively deleterious genes as the direct
source of senescence, and therefore helps to forge an important
link with established proximate causes of general bodily deteri-
oration. Moreover, the theory makes a clear distinction between
damage to the germ line (inherited) and damage to the soma (not
inherited). However, at its simplest, DS assumes that the struc-
tures and processes needed to maintain the soma have already
evolved, so that dealing with the problem of somatic damage is
mainly a matter of diverting more or fewer resources to repair.
Certainly, allocation tradeoffs are likely to play a role in deter-
mining within-generation senescence patterns, but the question
remains of how such tradeoffs evolved in the first place. For exam-
ple, one might ask if repair were cost free, then do any other factors
limit the efficiency of somatic maintenance. Of equal importance,
DS also makes no provision for these maintenance structures to
become damaged themselves. Finally, most variants of DS would
appear to predict that increased energy input should mitigate the
maintenance-reproduction tradeoff, which is at odds with impor-
tant work on caloric restriction (reviewed in Mitteldorf, 2001; but
see Shanley and Kirkwood, 2001).

A wholly different approach to understand the evolution of
senescence is one based on reliability theory. Reliability theory is
a branch of applied statistics that deals with the prediction of sur-
vivorship, failure rates, senescence, and longevity (Barlow et al.,
1965), typically in machines. Gavrilov and Gavrilova (2001) have
adapted reliability theory to help understand senescence in bio-
logical systems. In their theory, organisms’ vital functions can be
modelled as suites of parallel, redundant elements that are subject
to random damage (e.g., genes or gene products). Here, ‘redun-
dancy’ simply refers to the condition of having multiple elements,
and does not necessarily imply that the elements are identical
(although this is the convention we adopt; see below). As long as
one of the elements of a vital function remains undamaged, that
function is preserved and the organism lives. However, once all the
elements of a vital function are damaged, that function ceases to
work and the organism dies. Thus, in reliability theory, harm arises
from accumulated damage to beneficial genes or gene products,
rather than from late-acting actively deleterious genes as in MA
and AP. In this theory senescence - that is, an increase in mortality
rate with age - can occur only when a vital function has more than
one element associated with it (Gavrilov and Gavrilova, 2001). Fol-
lowing criticisms that reliability theory was non-evolutionary (e.g.,
see Pletcher and Curtsinger, 1998), we have recently showed that
such redundancy readily evolves from ancestral populations with
no redundancy (Laird and Sherratt, 2009).

Evolutionarily based models of reliability theory have several
features that recommend them over previous theories of senes-
cence: (1) They generate mortality curves that exhibit (i) rapidly
increasing mortality early in life, (ii) asymptotic mortality late in

life (i.e., mortality ‘plateaus’; but also see Coe et al., 2002), and (iii)
‘mortality compensation’, in which the mortality plateaus of popu-
lations from different environments level off at the same asymptote
(Gavrilov and Gavrilova, 2001; Laird and Sherratt, 2009). (2) They
envision accumulated damage to genes or gene products, rather
than time-specific deleterious effects of functioning genes, as the
primary driver of physiological decay and condition-dependent
death (Szilard, 1959), which is more in line with established prox-
imate causes of ageing (see above). (3) They see somatic reliability
as a function of redundancy, which is a well-known feature of bio-
logical systems in general and genetic architecture in particular
(Conant and Wagner, 2003; Nowak et al.,, 1997). And (4) evo-
lutionary models of the reliability theory of senescence explain
how these traits can evolve to a polymorphic equilibrium from
a non-senescing ancestral population (Laird and Sherratt, 2009).
(Note that point (4) does not imply that shorter-lived varieties
evolved from longer-lived varieties, but rather that the relation-
ship between mortality risk and age evolved from being constant
to monotonically increasing.)

Previous incarnations of reliability theory have considered
continuous-time models. In Gavrilov and Gavrilova’s (2001) formu-
lation [Eq. (1)] for example, a particular vital function is composed
of nirreplaceable, redundant elements, each of which has a contin-
uous failure rate of k. Their model does not explicitly treat repair
or regeneration of elements. However, even mechanisms of repair
and regeneration are subject to damage. It follows that there must
be some rate of irreparable damage that may be somewhat less
than the rate of repairable damage. The realized damage rate k can
be envisioned as the former, with no loss of generality. As long as
at least one of an individual’s elements remains undamaged, the
individual survives. When they are all damaged, the vital function
stops working and the individual dies. In this particular case, the
expected survivorship of a particular element is given by simple
exponential decay, e~*. Therefore, the probability that the element
is damaged by time t is simply 1 — e, and the probability that all
of the elements are damaged is (1 — e~*)", From this, it is clear that
the expected intrinsic survivorship of individuals with n elements,
as a function of time is

nt(e) =1 - (1—e k)", (1)

This paper makes two main contributions to the development
of the reliability theory of senescence:

First, we extend the approach of Gavrilov and Gavrilova (2001)
and Laird and Sherratt (2009) by considering three alternative types
of element/genetic architecture. Appealing to the standard anal-
ogy of an electrical circuit, Eq. (1) describes a system in which the
elements are effectively in parallel. It therefore seems natural to
ask what happens when elements are in series, i.e., when dam-
age to a single element causes the vital function to fail and the
individual to die. Thus, in addition to the ‘Parallel’ model, we also
present a ‘Series’ model (also see Gavrilov and Gavrilova, 2001).
Along with the Series and Parallel models, we consider a third type
of model [a ‘Cascade’ model, analogous to the multi-stage model of
disease progression (Armitage and Doll, 1954; Frank, 2004a,b,c)] in
which irreparable damage occurs in a strict sequence. For example,
one way that damage can occur in a sequence is if ‘higher order’
elements can be repaired by ‘lower-order’ elements in a cascad-
ing fashion, such that deterioration follows a strict progression of
stages. Fig. 1 shows schematic diagrams for all three models. Note
that the concept of ‘redundancy’ has a subtly different application
to the Series model, as compared to the Parallel and Cascade mod-
els: in the Parallel and Cascade models, redundant elements are
held ‘in reserve’, whereas in the Series model, they are superfluous.
Although we discuss both continuous- and discrete-time versions
of the three models, here we focus on the latter, which have not
been described previously.
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Second, we build on our earlier work that used an evolution-
ary dynamics approach (specifically, the quasispecies equation) to
demonstrate that redundancy, and hence senescence, can evolve
from non-redundant, non-senescing ancestral populations (Laird
and Sherratt, 2009). Thus, we show that redundancy and senes-
cence evolve in the Parallel and Cascade models, but not in the
Series model.

2. Derivation of discrete-time senescence models, and
comparison with continuous-time counterparts

2.1. Features common to all three models

We modelled three possible systems of irreplaceable elements,
the Series, Parallel, and Cascade models (Fig. 1). In all three models,
individuals have n elements. ‘Elements’ are abstractions of genes
or gene products, broadly representing the checks and balances
that buffer biological systems against failure and allow individ-
ual organisms to stay alive. Depending on the context they can be
profitably thought of as representing, for example, multiple bio-
chemical pathways to the same final product, stages in multi-stage
cancers or other diseases, or even morphological entities such as
sets of teeth. The elements are subject to damage, but the conse-
quences of this damage, and an individual’s ability to deal with it,
differ among the three models.

For each individual at each time step, each element is damaged
with probability d, the discrete-time analogue to the failure rate k
in Gavrilov and Gavrilova’s (2001) continuous-time model. In the
Series and Parallel models, each element can be thought of as a
copy, so it is natural to assume that all copies should have the same
rate/probability of breakdown. It is somewhat less obvious why
this should be true in the Cascade model, but we assumed as such
for consistency, analytical tractability, and simplicity (i.e., to start
with a minimum-assumption model); future work could relax this
assumption for all three models. Also note that previously damaged
elements can be re-damaged, but this has no additional effect on the
individual since ‘undamaged’ and ‘damaged’ are the only possible
states of an element.

Before proceeding with detailed descriptions of the three mod-
els, it is important to distinguish our work from an influential class
of models that has arisen over the last 15 years, based on the influ-
ential ‘Penna bit-string model’ of senescence (see the original paper
by Penna, 1995, and its intellectual progeny, e.g., Coe et al., 2002;
Coe and Mao, 2003). In these models, individuals’ genomes are rep-
resented by bit-strings (or continuous equivalents) in which each
bit represents a particular age at which harmful deleterious muta-
tions can arise. Thus, Penna-type models are a formalized version of
traditional MA theory (Coe et al., 2002): harm arises due to actively
deleterious genes with time-dependent effects. By contrast, in our

(a) Series

O

(b) Parallel

il

model, harm arises due to accumulated damage to beneficial genes
or gene products, and time-dependency is an emergent property of
this damage, rather than explicitly built in.

2.2. Series model

Individuals have n elements. These elements are subject to dam-
age, and the vital function ceases to work once any of the n elements
is damaged (i.e., each element is vital, as opposed to redundant).
When an element is damaged the individual dies (Fig. 1a).

We would like to know the probability lit“t that an individual
is still alive at time ¢ in the absence of extrinsic mortality (i.e.,
the expected ‘intrinsic survivorship’). (Throughout this paper, we
will use [I"(t) to denote survivorship as a continuous function of
time and l}“t to denote survivorship at discrete time-steps.) This
is equivalent to the probability that none of the n elements has
been damaged, t time steps in a row. Thus, the expected intrinsic
survivorship is given by

It — (1 —d)™. (2)

The derivation of the continuous-time Series model is similarly
straightforward. The expected survivorship of a particular element
is given by simple exponential decay, e X. Since all n elements
must remain undamaged in order that an individual survives, the
expected intrinsic survivorship is given by

lint(t) — e—ktn. (3)

Note that Gavrilov and Gavrilova (2001) examined the similar
yet distinct scenario of multiple series-connected blocks that were
themselves composed of parallel elements, but not in the evolu-
tionary context considered here.

2.3. Parallel model

Individuals have n redundant elements. These elements are sub-
jecttodamage, but solongas atleast one of anindividual’s elements
is undamaged, the corresponding vital function works and the indi-
vidual does not die due to bodily deterioration (Fig. 1b).

The probability that any given element is not damaged in t time
stepsis (1 —d)t. Therefore, the probability that that element is dam-
aged in t time steps is 1 — (1 —d)!. The probability that all of the
elements are damaged is (1 — (1 — d))", and hence, the probability
that at least one of the elements remains undamaged is equal to
the expected intrinsic survivorship and is given by

=1 (1-(1-d))". (4)

As shown by Gavrilov and Gavrilova (2001), and as derived in
Section 1, in continuous time, intrinsic survivorship is given by Eq.

(1).

(c) Cascade

O -O

Fig. 1. Schematic representation of the three models. Irreplaceable elements are indicated by the black rectangles (here, n=5 elements). In the discrete-time models, the
elements are subject to random damage at a probability of d per time step. This damage breaks the path on which the element is situated. So long as there is at least one
continuous path between the circles, the vital function continues to work and the individual survives. (a) In the Series model, the individual dies as soon as one element is
damaged. (b) In the Parallel model, the individual survives until all the elements are damaged. (c) The Cascade model is like the Parallel model, with one additional wrinkle:
accumulated damage must proceed in order from the lowest to the highest element, with the direction of damage indicated by arrows. One reason why a strict damage
sequence may arise is that higher-order elements are repaired by lower-order elements (so long as they themselves are not damaged). Alternatively, the Cascade model can
be considered a multi-stage model, with a series of checks and balances preventing disease progression, as envisioned by Frank (2004a,b,c) and drawing on the classic model

of Armitage and Doll (1954).
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2.4. Cascade model

As with the Parallel model, the elements are subject to dam-
age, and a single undamaged element is sufficient to prevent death
due to bodily deterioration. However, in contrast to the Paral-
lel model in which the elements work redundantly, here they
work redundantly and sequentially (Fig. 1¢): Element 2 cannot get
damaged without prior damage to Element 1 (Element 1 being
the start of the linear sequence), Element 3 cannot get damaged
without prior damage to Element 2, and so on. This means that
Element i can only get damaged if i=1, or if i>1 and all elements
1, ..., i—1 have already been permanently damaged (or are cur-
rently in the process of becoming permanently damaged within
the same time step). Thus, elements are permanently damaged
in a cascading fashion. Such a situation could arise if, for exam-
ple, Element 1 repairs Element 2, Element 2 repairs Element 3,
and so on (nothing repairs Element 1 and Element n repairs no
other element). In this interpretation, we must assume that the
time scale of repair is much shorter that the time scale of deteri-
oration, such that if Element n is damaged, it can be repaired by
Element n — 1 (if it is still functioning) sufficiently quickly to pre-
vent death. Alternatively, the Cascade model can be considered as
an analogue of the ‘multi-stage model’ of disease progression where
individuals must pass through particular disease stages before
eventually succumbing to the disease when they reach stage n (see
below).

Let E; represent the event that after t time steps Element 1
remains undamaged, E; represent the event that Element 2 remains
undamaged, and, generically, E; represent the event that Element
i remains undamaged, where i is an integer between 1 and n. The
probability that Element 1 is not damaged in t time steps is

P(E;) = (1 —d)". (5)

The probability that Element 2 is not damaged in t time steps is
equal to the probability Element 1 is not damaged in t time steps
plus the probability that Element 1 is damaged at some time tq, yet
Element 2 is not damaged between t; and t, inclusive. Because t;
can be any time step between 1 and t, this means that

IP(EZ E] + Z

t1=1

A1 -1d(1 — dyt-0+1 =

P(E1) + td(1 — d)'.

(6)

In general, for i>1 the probability that Element i is not dam-
aged in t time steps is equal to the probability that Element i — 1
is not damaged in t time steps plus the probability that Elements
1 through i —1 are damaged in that interval, yet Element i is not
damaged at the same time as Element i — 1 or thereafter [for i=1,
the probability that Element i is not damaged in t time steps is
simply given by Eq. (5)]. While there are t ways that exactly one
element can be damaged in t time steps [Eq. (6)], the number of
ways that exactly i — 1 elements can be damaged in t time steps
is :J_r§7 2 . (This is a classic ‘M marbles in B boxes’ combi-
natorics problem where the M marbles are analogous to the i —1
damaged elements and the B boxes are analogous to the t time
steps.) The probability of each of the ways that exactly i —1 ele-
ments can be damaged is d~'(1 —d)t. Thus, the probability that
Element i is not damaged in t time steps is given by the recursion
equation:

P(E;) =P(Ei_1) + (”ﬁ )d”(l—d)ﬂ (7)

where P(Ey) is defined as 0, and keeping in mind that (61 ) =1,

and ZV = 0ifw < vand both w and v are non-negative integers.

If Element n is permanently damaged, this means that all the
elements must be damaged, and the individual dies. Similarly, if
Element n is not damaged, then by definition not all the elements
are damaged, and the individual does not die due to bodily dete-
rioration. Thus, the expected intrinsic survivorship in the Cascade
model is equal to the probability that Element n is not damaged at
time t and is given by the recursion equation

Nt — P(E,) = P(En_1) + (Zi‘i—2> d1(1 - d., (8)

which can be expressed non-recursively as

=y <:ﬁ+_f;2> a1 = d)=(1 - a) Y (jfﬁ‘z) d=1. (9)
i=1

i=1
The continuous-time Cascade model’s survivorship equation
can be found by noting the similarity of the Cascade model to the
multi-stage model of disease progression (Armitage and Doll, 1954;
Frank, 2004a,b,c). In this model, individuals start in stage 0, and
must pass through multiple successive stages 1, ..., n—1 before
dying when they reach stage n. Frank (2004a) modelled this process
as a system of differential equations:

% - —uo(t)X(](t) — dO(t)XO(t)7

dXi

dar - u;_p(E)xi_1(£) — ui(O)x;(¢) — di(£)x;(L), (19)
% = Up_1(t)xn_1(1),

where i is an integer between 1 and n — 1, x;(t) is the proportion of
individuals in stage j at time t, u;(t) is the rate at which individuals
advance one stage, and d;(t) is the ‘extrinsic’ death rate from other
causes for individuals in stage j [note that in Eq. (10), the symbol
d is used in a different context than in our discrete-time models].
By setting all u;(t) to the constant continuous failure rate of k, and
setting all d;(t)=0 (since we would like to know the intrinsic sur-
vivorship), we are left with a continuous version of the Cascade
model:

dx
ar = (),
Xm'

G = k() = kxi(o), (11)

dxn
dt
Following Frank (2004a), the general solution for this model is
the Poisson relationship x;(t)=e~*{(kt)i/i! fori=0,...,n—1,and the
initial condition that xo(0)=1 and x;(0)=0 for i>0. Because indi-
viduals survive as long as they are in stage n — 1 or lower, intrinsic
survivorship for the continuous-time cascade model is given by

= kxp_1(t).

n-1

—kt n-1 i
int e kt) ke N\ (KE)
ey ="y ek = (12)
i=0 i=0

Table 1 provides a summary of the discrete- and continuous-
time survivorship equations for the Series, Parallel, and Cascade
models.
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Table 1

Summary of intrinsic survivorship equations for continuous- and discrete-time ver-
sions of the Series, Parallel and Cascade models. [™(t) and I‘t“t represent expected
intrinsic survivorship as a function of time, ¢, in the continuous- and discrete-time
models, respectively. n represents the number of elements that compose the vital
function. k and d represent the continuous damage rate and the discrete damage
probability, respectively. Note that for the continuous-time Cascade model, the lim-
its on the index i have been changed from how they appear in Eq. (12) to match the
corresponding discrete-time model.

Model type Continuous time Discrete time
Series line(£) = e~ ktn It — (1 —d)™
Parallel nt()=1—(1—ek)" it —1-(1-(1- d))"
n n -
Cascade lin() = efkfz Gof L e (q - d)‘z ( :+ ;7 2) d-!
i=1

i=1

2.5. Calculating survivorship, mortality, longevity, and lifetime
reproductive output in discrete-time models

Intrinsic survivorship litnt represents the mean survivorship to
age t, provided that there are no extrinsic sources of mortality. This
allowed us to double check the outputs of Egs. (2), (4), and (9) by
comparing predicted survivorship curves with the mean survivor-
ship curves derived from 100 computer-simulated cohorts of 100
individuals. For each of the three models, we examined four levels
ofn(n=1,5,10,and 50). In all twelve cases, the simulations and the
corresponding analytical solutions were congruent (see Appendix
A in the supplementary material).

The intrinsic mortality probability as a function of age is

For a constant extrinsic mortality probability of g®*t, and assum-
ing that extrinsic and intrinsic mortality are independent, the
overall mortality probability at age t is

Qe = gt + qitnt _ qextqitnt7 (14)

and the overall survivorship at age t is

lp = [nt(1 — gexty’, (15)
Under this overall age-dependent mortality and survivorship,

the mean longevity is

00 t-1

o=> ][0 -a)=> (16)
t=1 u=0 t=1

which can be calculated to an arbitrary level of precision using
either mortality or survivorship data.
Lifetime reproductive output is given by the equation:

R= thbf, (17)
t=1

where b; is the birthrate at age t (Williams and Day, 2003). For
model-exploration purposes it is useful to assume a constant
age- and condition-independent birthrate of b (Laird and Sherratt,
2009). In this case, therefore, R = bg. Of course, in real biological sys-
tems birthrates are not constant, but treating them as such avoids
having senescence automatically built into the model.

3. Patterns of intrinsic survivorship and mortality in
discrete-time models

) lint _ Iint
int — % (13) In the Series model, redundancy decreases intrinsic survivorship
) (Fig. 2a) and increases intrinsic mortality (Fig. 3a) as a consequence
(a) Series (b) Parallel (c) Cascade

1.0

\

int LAY

lg 0.5 TAMAALANERRRRRNY
1T
\

0.0 3

200 400 500
t 800

Fig. 2. Expected intrinsic survivorship (Ii") as a function of age (t; discrete-time) and redundancy (n) under an extrinsic mortality rate of ¢® =0 and a damage rate of d=0.1.
(a) Series model, (b) Parallel model, (¢) Cascade model. Survivorship curves represent analytical solutions based on Eqs. (2), (4), and (9), for panels (a), (b), and (c), respectively.

(a) Series

t
0.5

0.0

10

20
30
t 40

(b) Parallel

(c) Cascade

150[.‘!2000

Fig. 3. Expected intrinsic mortality (qi["‘) as a function of age (¢; discrete-time) and redundancy (n) under an extrinsic mortality rate of ¢®‘ =0 and a damage rate of d=0.1. (a)
Series model, (b) Parallel model, (c) Cascade model. Mortality curves represent analytical solutions based on Eq. (13). Note that the t-axis in panel (c) extends further than
the corresponding t-axis in Fig. 2¢c. This was done to show more of the approach to the mortality plateau. Actuarial senescence occurs in the Parallel and Cascade models, but

not in the Series model.
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of more links in the chain. Senescence does not occur for any level
of redundancy; rather mortality rates remain constant at all ages
(Fig. 3a).

In contrast, in the Parallel and Cascade models, redundancy
increases intrinsic survivorship (Fig. 2b,c) and decreases intrinsic
mortality (Fig. 3b,c). In these two models, senescence occurs in
cases where n> 1, i.e., when redundancy exists (Fig. 3b,c), and the
shape of the mortality curves resembles real curves in that risk
rapidly increases early in life before reaching a ‘plateau’ late in life.
The height of the plateau is determined solely by - and is equal
to - the damage rate d, the probability of the last element fail-
ing after all the others have already failed (Gavrilov and Gavrilova,
2001). This means that populations that evolved under different
levels of extrinsic mortality (but similar levels of damage) will
undergo a convergence in their mortality rates late in life (‘mor-
tality compensation’; Gavrilov and Gavrilova, 1991). Thus, along
with the plateau itself, the reliability theory of senescence readily
generates aspects of late-life mortality that are difficult to explain
with other (non-reliability-based) evolutionary theories of senes-
cence (Demetrius, 2001; Pletcher and Curtsinger, 1998; Wachter,
1999).

4. Relationship between redundancy and lifetime
reproductive output

In the Series model, redundancy reduces lifetime reproduc-
tive output (Fig. 4a). Thus, insofar as lifetime reproductive output
can be taken as a proxy for fitness [e.g., in the case of dis-
crete generations, assuming that there are sufficiently many time
steps per generation (t) that Iy ~0], there is strong selection to
reduce the number of elements in series-connected systems. In
reality, however, organisms have multiple vital functions, all of
which must be functioning in order for the individual to survive.
Therefore, while one might expect natural selection to reduce the
number of elements in series within a particular vital function,
one should not expect natural selection to eliminate series-
connected elements altogether, especially across multiple vital
functions.

In the Parallel and Cascade models, redundancy increases life-
time reproductive output (Fig. 4b,c). Thus, natural selection should
result in an increased number of parallel and cascading elements
in vital functions (once again insofar as R represents fitness). How-
ever, this directional selection cannot operate indefinitely for three
reasons. The first reason is that increased redundancy might come
at a metabolic and ultimately reproductive cost (Frank, 2008), lead-
ing to an optimization of redundancy (i.e., as in the DS model). The
second reason is that there may be a negative relationship over evo-
lutionary time between element quantity and quality (‘the paradox
of robustness’; Frank, 2004b, 2007). The third reason is the one we

(a) Series

10

0.0

10 qexl

(b) Parallel

examine here, and is related to the fact that the increase in life-
time reproductive success decelerates at high redundancy (with
the exception of the Cascade model in the case of zero extrin-
sic mortality; Fig. 4c). Under the reasonable assumption of biased
mutation rates, wherein the probability that offspring have fewer
elements than their parents exceeds the probability that offspring
have more elements than their parents (i.e., deleterious mutations
are more common than beneficial ones; Eyre-Walker and Keightley,
2007), decelerating directional selection for redundancy should
eventually face a mutation-selection balance. Previously, we have
demonstrated this for the continuous-time version of the Parallel
model (Laird and Sherratt, 2009). In the next section, we explore
the evolution of redundancy in the discrete-time versions of the
Series, Parallel, and Cascade models.

Unsurprisingly, in all three models, increased extrinsic mortality
decreases lifetime reproductive output (Fig. 4), and also decreases
the benefit of having fewer elements in the Series model, or more
elements in the Parallel and Cascade models.

5. The (limited) evolution of redundancy and its
consequences

Here we assumed that the number of elements n was herita-
ble, and for simplicity we viewed this redundancy trait as if it were
controlled by a single gene. We modelled the evolution of redun-
dancy using the discrete-generation quasispecies equation, which
tracks the relative abundance of N genotypes (corresponding to dif-
ferent levels of n) through evolutionary time (see Nowak (2006)
for an in-depth explanation of the quasispecies equation with
continuously overlapping generations). The discrete-generation
quasispecies equation is a system of recursion equations
given by

N
;L Zj:ﬁ‘jfjﬂij
Xi= 5N N )
D he Zjﬂxjfj“hj

where x; is the relative abundance of genotype j in the current gen-
eration, f; is the fitness (reproductive success) of genotype j, and
Hij is the transition probability from genotype j to genotype i (i.e.,
the mutation rate whenj # i). Using lifetime reproductive output
(R) as a proxy for fitness, as is appropriate for a discrete-generation
analysis, the numerator of Eq. (18) is the number of genotype i off-
spring produced per individual in the current generation and the
denominator is the total number of offspring produced per indi-
vidual in the current generation. Therefore, the quotient x; is the
relative abundance of genotype i in the next generation. For the
transition rate, we assumed that mutations could only increase n
by one (at a rate of y;j=a when i=j+1) or decrease n by one (at
a rate w;; =B when i=j—1; a+B<1). For example, the transition

i=1,...,N, (18)

(c) Cascade

Fig. 4. Expected lifetime reproductive output (R) in the discrete-time models as a function of redundancy (n) and extrinsic mortality (¢®**), under a damage rate of d=0.1,
and a constant birth rate of b=1 (hence, R is directly proportional to mean longevity). (a) Series model, (b) Parallel model, (¢) Cascade model. Surfaces are based on Eq. (17).
Lifetime reproductive output increases linearly with n only in the Cascade model, and only if ¢®*t = 0; otherwise it decelerates (and even decreases in the Series model).
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probability matrix for N=5 is

“Parent (j)"
1-«a B 0 0 0
o l1-a-p B 0 0
i =[] = “Offspring (i)” 0 o 1-a-p B 0
0 0 o 1-a-8 B
0 0 0 o 1-8

(19)

Reflecting the fact that deleterious mutations are more common
than beneficial ones (Eyre-Walker and Keightley, 2007), we further
assumed that 8>a.

Multi-gene (as opposed to single-gene) control of vital functions
is another possibility, and is perhaps particularly relevant for the
Cascade model. However, with multi-gene control, the © matrix
becomes extremely large because there are many more possible
genotypes (2V instead of N). For instance when N =50, the 14 matrix
has (2°9)2 > 1030 entries—far too large for the models to be ana-
lytically tractable. Therefore, we opted to stay with single-gene
control, which we argue below would make only small, quantitative
differences to our results. See Frank (2004b) for a computer simula-
tion (i.e., non-analytical approach) in which stages, and transitions
between stages, are mediated by separate genes.

Fig. 5 (top row) and Appendix B in the supplementary material
show 30,000 generations of discrete-generation quasispecies evo-
lution for the discrete-time Series, Parallel, and Cascade models

for example parameter values of d=0.01,b=1, ¢®**=0.02, « =0.001,
and 8=0.01. As many as N=50 elements were allowed to evolve [N
must be specified to allow the application Eq. (18)]; however, this
was greater than the number of elements that actually did evolve.
This represents conditions under which the evolved distribution
of n was independent of N, and was the motivation behind the
parameter values chosen for these examples.

In all three cases, at generation 0 every individual had n=1 ele-
ment (i.e., no redundancy). In the Series model, there was negligible
deviation from the starting conditions over evolutionary time (sta-
ble mean n=1.004; Fig. 5a). This reflects the fact that for the Series
model, individuals with only one element have the greatest life-
time reproductive output (Fig. 4a), and confirms our prediction that
selection should favour a reduction (or at least resist an increase)
in the number of series-connected elements.

On the other hand, in the Parallel and Cascade models, the
average number of elements increased over evolutionary time
before settling on stable values (approximately 18 and 6 ele-
ments, respectively, in Fig. 5b,c). This reflects the facts that lifetime
reproductive output increases with n in the Parallel and Cas-
cade models, but that this relationship is a decelerating one
(Fig. 4b,c). Hence, these results confirm our prediction that selec-
tion should favour an increase in the number of parallel- or
cascade-connected elements, but only until a mutation-selection
balance is reached. Nunney (1999, 2003) used an altogether dif-
ferent analysis to reach a similar conclusion about the number
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Fig. 5. Top row: example of discrete-generation quasispecies evolution for the discrete-time version of the (a) Series, (b) Parallel, and (c) Cascade models. The panels show
the evolutionary trajectory of the average number of elements (n) over 30,000 generations. The damage rate was d=0.01, the birth rate was b=1, the extrinsic mortality
rate was ¢®'=0.02, and the up- and down-mutation rates were «=0.001 and 8=0.01, respectively. At the start, every individual had n=1 element. See Appendix B in the
supplementary material for the evolutionary trajectories of the relative abundances of the 50 individual genotypes for the same model conditions shown here. Middle row:
the corresponding stable relative abundance distributions of the 50 genotypes (corresponding to 1-50 elements; black bars) after 30,000 recursions of Eq. (18). Bottom row:
the corresponding stable relative abundance distributions of the fifty genotypes (grey bars) as determined by eigenvector analysis.
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(a) Series

(b) Parallel

(c) Cascade

Fig. 6. The equilibrium mean number of elements (mean n, as calculated by eigenvector analysis) for various combinations of damage rate (d) and extrinsic mortality (q®**)
for the discrete-time version of the (a) Series, (b) Parallel, and (c) Cascade models. In all cases, the birth rate was b =1, the up- and down-mutation rates were & =0.001 and

B=0.01, respectively, and at the start, every individual had n=1 element.

of tumour-suppressor loci that should evolve for multi-stage
cancers.

We have showed that for certain types of element architec-
ture, redundancy - and, following from Section 3, senescence - can
evolve from non-redundant, non-senescing ancestral populations.
(Again we stress that this does not mean that longevity decreased
over evolutionary time; indeed the opposite was true in the Paral-
lel and Cascade models.) Moreover, distributions of n (middle row,
Fig. 5b,c), which can occur due to a high incidence of initial defects,
or which, as described here, can be maintained at the population
level via mutation-selection balance, may lead to more biologically
realistic population mortality curves compared to monocultures
(Gavrilov and Gavrilova, 2001; Laird and Sherratt, 2009). In this
example quasispecies analysis, the mean number of elements that
evolved in the Parallel model was roughly three times the number
that evolved in the Cascade model (compare Fig. 5b,c). Given equal
parameter values, fewer elements evolve in the Cascade model
because, with the necessary ordering, it takes far longer before all
elements are damaged.

Importantly, the distributions of n that emerge from the discrete
quasispecies analysis are formal mathematical equilibria, and they
are stable. To see why this is so, consider a modified version of Eq.
(18) that operates on absolute abundances (a;) rather than relative
abundances (x;):

N
a;:Zaij}mj, i=1,...,n. (20)
=1

This can be converted into matrix form:
d = Ma, (21)

here @ = [a}] and a = [a;] are column vectors representing the

undances of each genotype i in the next and current generation,
respectively, and M={[f;u;;] is the transition matrix incorporating
fitness and mutation. Because this is a linear model, the long-term
relative abundances of its variables are stable, even though the
absolute abundances typically are not (Nowak, 2006; Otto and Day,
2006). Additionally, this stable equilibrium relative abundance dis-
tribution is given by the leading eigenvector of M, whose length is
scaled so that its elements sum to one (Nowak, 2006; Otto and Day,
2006). Indeed, eigenvector analysis gave the same long-term rel-
ative abundance distribution of genotypes as 30,000 generations
of discrete quasispecies evolution (e.g., compare Fig. 5, middle and
bottom rows).

Naturally, precisely how much redundancy evolves depends
on the parameter values chosen. Fig. 6 shows the equilibrium
mean number of elements that evolve for various combinations
of damage rate and extrinsic mortality (d: [0.01, 0.02]; ¢®*: [0.02,
0.2]; other parameter values: b=1, «=0.001 and 8=0.01). In the
Series model, d and g®*t have very little effect on the mean n that

evolves; mean n was always approximately 1 (Fig. 6a). Regardless
of the environmental conditions, redundancy is so deleterious in
the Series model that it effectively never evolves.

In contrast, in the Parallel and Cascade models, d has a positive
effect and ¢®** has a negative effect on the evolved mean redun-
dancy (Fig. 6b,c). The explanations for both of these results are
closely linked. Damage rate has a positive effect on the evolution of
redundancy because as damage rate increases, individuals are more
likely to require “backup” elements within their expected lifespan
as partially determined by the extrinsic mortality rate. Similarly,
extrinsic mortality has a negative effect on the evolution of redun-
dancy because as extrinsic mortality increases, individuals require
fewer backups because they will probably not live long enough to
use very many of them. Thus, we predict natural selection to mold
redundancy, and by extension senescence, to the environmental
conditions experienced by an evolving population.

Note that in Fig. 6, the maximum value of d and the minimum
value of g®*t were chosen to ensure that the maximum number of
elements that were allowed to evolve (50) had a minimal influence
on mean n (e.g., in the Parallel model, when d=0.02 and ¢®** =0.02,
mean n at equilibrium was the highest of any of the conditions
examined at 38.7; however, the relative abundance of individu-
als with n=N=50 elements was only 0.000243). Greater values of
d or smaller values of q®t simply lead to a greater mean equi-
librium number of elements in the Parallel and Cascade models;
our qualitative results still hold. Note also that the equilibrium
mean n was the same whether it was calculated after applying
30,000 recursions of the discrete quasispecies equation [Eq. (18)]
or by eigenvector analysis (see Appendix C in the supplementary
material).

Would the results be qualitatively different if we used multi-
gene versus single-gene control? We argue no. Given low and
downwardly biased mutation rates, the probability of offspring
with increased redundancy relative to their parents would decline
very slightly with increasing n, and the probability of offspring with
decreased redundancy would increase very slightly with increas-
ing n, because there are more opportunities for damage to occur at
higher n in multi-gene versus single-gene control. Thus, quantita-
tively, the mutation-selection balance would be shifted slightly to
the left. But qualitatively, there would still be a non-trivial equilib-
rium solution, and there would still be the evolution of redundancy
and senescence from non-redundant, non-senescing populations,
at least in the Parallel and Cascade models.

The differences in average n mean that even when populations
that evolved under different d and g are brought into captivity
and relieved of extrinsic mortality (i.e., g is set to 0, but d stays the
same), they still exhibit differences in mean longevity (Fig. 7). In the
Series model, there is essentially no variation in average n for dif-
ferent values of d and gt — all parameter combinations lead to the
evolution of no redundancy (Fig. 6a). Therefore, when populations
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(a) Series

longevity

(b) Parallel

(c) Cascade

longevity

Fig. 7. The mean longevity in captivity (i.e., ¢®** =0) for mixed-n equilibrium populations (as calculated by eigenvector analysis) for various combinations of damage rate (d)
and extrinsic mortality (q®*t) for the discrete-time version of the (a) Series, (b) Parallel, and (c) Cascade models. In all cases, the birth rate was b = 1, the up- and down-mutation
rates were o =0.001 and B=0.01, respectively, and at the start, every individual had n=1 element.

whose individuals have series-connected elements are brought into
captivity, there is no effect of ¢®** on mean longevity (Fig. 7a). Con-
versely, there is a negative effect of damage on mean longevity in
captivity in the Series model (Fig. 7a). However, this is simply a
direct effect of damage — when essentially all individuals have one
and only one element, those whose elements are damaged more
readily are likely to die sooner.

Unlike in the Series model, in the Parallel and Cascade mod-
els there is a negative effect of extrinsic mortality on the evolved
mean n (Fig. 6b,c). Thus, when populations whose individuals have
parallel- or cascade-connected elements are brought into captivity,
those that originally evolved under relatively high extrinsic mortal-
ity have a shorter mean longevity than those that originally evolved
under relatively low extrinsic mortality (Fig. 7b,c).

The effect of damage rate on mean longevity in captivity is also
more subtle in the Parallel and Cascade models. As with the Series
model, in the Parallel and Cascade models there is a negative effect
of damage rate on mean longevity in captivity (Fig. 7b,c). But, unlike
in the Series model, the direct action of damage is only a partial
explanation. After all, populations have the potential to ‘com-
pensate’ for increased damage rates by evolving extra elements
(Fig. 6b,c). However, because the position of the mutation-selection
balance with respect to n in high- versus low-damage popula-
tions, such compensation does not fully occur; rather, individuals
in populations that evolved under high-d conditions live shorter
than individuals that evolved under low-d conditions, even after
long-term, cost-free selection to ameliorate the damage (Fig. 7b,c).
For further discussion of the environmental dependence of the
evolution of senescence and longevity see, for example, Abrams
(1993), Carlson et al. (2007), Keller and Genoud (1997), Reznick et
al. (2004), Stearns et al. (2000), Williams and Day (2003).

6. Conclusion

Reliability theory is a powerful approach for understanding the
evolution of senescence. In this approach, various elements accu-
mulate damage, ultimately resulting in their bearer’s death. Here,
we derived three discrete-time models, one in which the elements
of a vital function are in series, one in which they are in parallel,
and one in which they become damaged in a cascading fashion. We
showed that redundancy leads to senescence in the Parallel and
Cascade models, but not in the Series model. Further, in the Paral-
lel and Cascade models, lifetime reproductive output is related to
redundancy in a positive but decelerating fashion, a situation that
leads to a mutation-selection balance and the evolution of a stable
equilibrium population distribution of redundancy. The arrange-
ments of elements in the Parallel and Cascade models are simplified
to be sure; however, in a general sense, they represent the way
collections of checks and balances maintain life in real systems.
Thus, broadly, senescence may arise because the systems that have

evolved to allow robust physiological functioning ultimately get
damaged, and there is little selection to do anything to improve
their reliability beyond a certain point. In this manner, harm arises
from the inactivity of elements (genes or their products) that accu-
mulate damage over time and ultimately fail to do the organism
good, rather than as a consequence of late-acting actively deleteri-
ous genes.
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Appendix A. Comparison of analytical and simulated survivorship curves

The evolution of senescence in multi-component systems
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Survivorship curves derived from the analytical solutions are the same as the curves generated by
following the survivorship of simulated cohorts (Fig. A.1).
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Fig. A.1. Intrinsic survivorship curves (I versus #) for monoculture populations with four different
levels of redundancy (black, n = 1; red, n = 5; blue, n = 10; green, n = 50), under an extrinsic mortality
rate of ¢*" = 0 and a damage rate of d = 0.1. Lines represent analytical solutions based on Egs. (2), (4),
and (9), for panels (a), (b), and (c), respectively (i.e., the Series, Parallel, and Cascade models). Circles
represent the mean survivorship curves derived from 100 simulated cohorts of 100 individuals (maximum
t for each line is the age-at-death of the longest-lived of 10,000 individuals in each simulation). There

was a good fit between the analytical solutions and the numerical simulations (all » > 0.9999).



Appendix B. Discrete-generation quasispecies evolution of genotype relative abundance
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Figures B.1, B.2, and B.3 show examples of the discrete-generation quasispecies evolution for the Series,
Parallel, and Cascade models, respectively.
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Fig. B.1. Example of discrete-generation quasispecies evolution for the discrete-time version of the Series
model. The figure shows the evolutionary trajectories of the relative abundances of 50 genotypes
(colours, corresponding to individuals with n =1 to 50 series elements) over 30,000 generations. The
damage rate was d = 0.01, the birth rate was b = 1, the extrinsic mortality rate was ¢ = 0.02, and the up-
and down-mutation rates were oo = 0.001 and = 0.01, respectively. At the start, every individual had n =
1 element and very little changed over 30,000 generations: the line with a relative abundance close to 1
represents the n = 1 genotype; all other lines (genotypes) overlapped with relative abundances close to 0.
The stable equilibrium distribution of genotypes is shown in the bottom panel of Fig. S5a in the main text.
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Fig. B.2. (a) Example of discrete-generation quasispecies evolution for the discrete-time version of the
Parallel model. The figure shows the evolutionary trajectories of the relative abundances of 50 genotypes
(colours, corresponding to individuals with #n =1 to 50 parallel elements) over 30,000 generations. The
damage rate was d = 0.01, the birth rate was b = 1, the extrinsic mortality rate was ¢ = 0.02, and the up-
and down-mutation rates were oo = 0.001 and = 0.01, respectively. At the start, every individual had n =
1 element. Over the 30,000 generations, a gradual and slowing replacement of the genotypes took place,
so that eventually there was a stable equilibrium distribution of genotypes (shown for these parameter
values in the bottom panel of Fig. 5b in the main text. (b) The same data as shown in panel (a), only with
a log-transformed x-axis; this was done to better see the early evolutionary dynamics of the relative
abundances of the different genotypes, the first five of which are noted. Although in panel (b) it may
appear that a stable distribution of genotypes has not been approached, this is merely an optical illusion
caused by the compression of the x-axis. In fact, the relative abundances of all genotypes changed by less
than 1% in the last 1000 generations; panel (a) confirms that the relative abundances of the genotypes
became almost constant well before the end of the quasispecies analysis.
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Fig. B.3. (a) Example of discrete-generation quasispecies evolution for the discrete-time version of the
Cascade model. The figure shows the evolutionary trajectories of the relative abundances of 50
genotypes (colours, corresponding to individuals with » = 1 to 50 elements that repair one another in a
cascading fashion) over 30,000 generations. The damage rate was d = 0.01, the birth rate was b = 1, the
extrinsic mortality rate was ¢ = 0.02, and the up- and down-mutation rates were &= 0.001 and 8 = 0.01,
respectively. At the start, every individual had n = 1 element. Over the 30,000 generations, a gradual and
slowing replacement of the genotypes took place, so that eventually there was a stable equilibrium
distribution of genotypes (shown for these parameter values in the bottom panel of Fig. 5c in the main
text. (b) The same data as shown in panel (a), only with a log-transformed x-axis; this was done to better
see the early evolutionary dynamics of the relative abundances of the different genotypes, the first five of
which are noted.



Appendix C. Comparison of evolved n and mean longevity derived from eigenvector
analysis and 30,000 recursions of the discrete quasispecies equation
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Mean evolved redundancy (Fig. C.1) and mean longevity in captivity (Fig. C.2) are the same whether
calculated by 30,000 recursions of the discrete quasispecies equation [Eq. (18)] or eigenvector analysis.

(a) Series (b) Parallel (c) Cascade

Fig. C.1. The equilibrium mean number of elements (mean ») as calculated by 30,000 discrete generations
of quasispecies evolution (symbols) and eigenvector analysis (mesh) for twenty combinations of damage
rate (d: 0.01, 0.013, 0.016, and 0.019) and extrinsic mortality (¢g°": 0.02, 0.06, 0.1, 0.14, and 0.18) for the
discrete-time version of the (a) Series, (b) Parallel, and (c) Cascade models. In all cases, the birth rate
was b = 1, the up- and down-mutation rates were o = 0.001 and S = 0.01, respectively, and at the start,
every individual had n = 1 element.

(a) Series (b) Parallel (c) Cascade

longevity

Fig. C.2. The mean longevity in captivity (i.e., ¢*= 0) for mixed-n populations that originally evolved for
30,000 discrete generations of quasispecies evolution (symbols) or as determined by eigenvector analysis
(mesh) for twenty combinations of damage rate (d: 0.01, 0.013, 0.016, and 0.019) and extrinsic mortality
(¢ 0.02, 0.06, 0.1, 0.14, and 0.18) for the discrete-time version of the (a) Series, (b) Parallel, and (c)
Cascade models. In all cases, the birth rate was b = 1, the up- and down-mutation rates were a = 0.001
and f = 0.01, respectively, and at the start, every individual had n» = 1 element.
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